If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+12X=245
We move all terms to the left:
X^2+12X-(245)=0
a = 1; b = 12; c = -245;
Δ = b2-4ac
Δ = 122-4·1·(-245)
Δ = 1124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1124}=\sqrt{4*281}=\sqrt{4}*\sqrt{281}=2\sqrt{281}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{281}}{2*1}=\frac{-12-2\sqrt{281}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{281}}{2*1}=\frac{-12+2\sqrt{281}}{2} $
| 5a-40=3a+60 | | 12x+9=189 | | x^2-3x+5/4=0 | | 5-3(x-7=32 | | 5x-18=9x-25 | | x=1/2x(130-80) | | 18=r-14 | | 0.25x+0.15(100+x)=17 | | 14.75x=9.50+105x | | 6=2x3 | | 20x+8=18x+3 | | 7x-(-4x-1)=2 | | x−(1 3x−2)=12 | | 17(4+x)=23 | | x−(11/3x−2)=12 | | 3x-35=2x+40=3 | | 458/9=7/9y | | .6d=1.8 | | x÷(-3)=9 | | 132=(2)(3.14)(x) | | x^2+2x-0.49=0 | | 7x-{x-12}=32-4x | | 4(1z+3)-4=8(1/2z+1) | | 132=2X3.14Xx | | 8000/12000=11/m | | 5r-7=2-8r | | ((5x)^2)+7x+2=1 | | ((5x)^2)+7x+2=0 | | 5-6y-9y=-15+5 | | 4x+(-8)=3x-9 | | (8+k)6=96 | | 7x(2x+5)=4x-9-x |